Effect of association with sulfate on the electrophoretic mobility of polyarginine and polylysine.

نویسندگان

  • Erik Wernersson
  • Jan Heyda
  • Anna Kubícková
  • Tomás Krízek
  • Pavel Coufal
  • Pavel Jungwirth
چکیده

Domains rich in cationic amino acids are ubiquitous in peptides with the ability to cross cell membranes, which is likely related to the binding of such polypeptides to anionic groups on the membrane surface. To shed more light on these interactions, we investigated specific interactions between basic amino acids and oligopeptides thereof and anions by means of electrophoretic experiments and molecular dynamics simulations. To this end, we measured the electrophoretic mobilities of arginine, lysine, tetraarginine, and tetralysine in sodium chloride and sodium sulfate electrolytes as a function of ionic strength. The mobility was found to be consistently lower in sodium sulfate than in sodium chloride at the same ionic strength. The decrease in mobility in sodium sulfate was greater for tetraarginine than for tetralysine and was larger for tetrapeptides compared to the corresponding free amino acids. On the basis of molecular dynamics simulations and Bjerrum theory, we rationalize these results in terms of enhanced association between the amino acid side chains and sulfate. Simulations also predict a greater affinity of sulfate to the guanidinium side chain groups of arginine than to the ammonium groups of lysine, as the planar guanidinium geometry allows simultaneous strong hydrogen bonding to two sulfate oxygens. We show that the sulfate binding to arginine, but not to lysine, is cooperative. These results are consistent with the greater decrease in the mobility of arginine compared to that of lysine upon addition of sulfate salt. The nonspecific mobility retardation by sulfate is ascribed to its electrostatic interaction with the cationic amino acid side chain groups.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Purification and Some Properties of Two Proteinases from Crotalus adamanteus Venom That Inactivate Human al-Proteinase

Two proteinases (proteinases I and II) have been purified from Crotalus adamanteus venom to the stage of electrophoretic homogeneity and proteinase II has been crystallized. The proteinases differ slightly in molecular weight and amino acid composition. Both are metalloenzymes requiring Zn2+ or Ca2+, or both; neither requires thiol compounds for activation. The proteinases are free of esterolyt...

متن کامل

Evalution of In Vitro Effect of Flavonoids on Human Low-Density Lipoprotein Carbamylation

The non-enzymatic carbamylation of low density lipoprotein (LDL) is a naturally occurring chemical modification of apolipoprotein B as a result of condensation between lysine residues and cyanate derived from urea. Carbamylated LDL is poorly recognized by LDL receptors and initiates different processes that can be considered proatherogenic. Thus, LDL carbamylation may contribute to the increase...

متن کامل

Evalution of In Vitro Effect of Flavonoids on Human Low-Density Lipoprotein Carbamylation

The non-enzymatic carbamylation of low density lipoprotein (LDL) is a naturally occurring chemical modification of apolipoprotein B as a result of condensation between lysine residues and cyanate derived from urea. Carbamylated LDL is poorly recognized by LDL receptors and initiates different processes that can be considered proatherogenic. Thus, LDL carbamylation may contribute to the increase...

متن کامل

بررسی ترکیبات گلیکوزیله نهایی آلبومین سرم (AGE) در افراد دیابتی به روش ایزوالکتریک فوکوسینگ (IEF) و فلورسانس جهت ارزیابی پیشرفت بیماری دیابت

Background: The non-enzymatic glycosylation (NEG) of proteins in diabetes damages both the structure and function of these proteins. In vivo and in vitro studies have shown that NEG of proteins and advanced glycosylation end-products (AGE) contribute to the pathogenesis of both macrovascular, such as atherosclerosis, and microvascular complications, such as retinopathy and nephropathy, in diabe...

متن کامل

جدا سازی لیپوپروتئین با وزن مخصوص پایین (LDL) همراه با تغییر آن توسط یون های مس و مالون دی آلدئید

Oxidation of low density lipoproteins (LDLs) is belived to be an important step in the pathogenesis of atherosclerosis. During oxidation, LDL particle undergoes a large number of structural changes that alters its biological properties, so it becomes atherogenic. To study atherogenic proteins, usually two forms of modified LDLs, including Cu2+-oxidized LDL (ox-LDL) and malondialdehyde (MDA) mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 114 36  شماره 

صفحات  -

تاریخ انتشار 2010